Prelimbic/infralimbic inactivation impairs memory for multiple task switches, but not flexible selection of familiar tasks.

نویسندگان

  • Erin L Rich
  • Matthew L Shapiro
چکیده

Behavioral flexibility, in the form of strategy switching or set shifting, helps animals cope with changing contingencies in familiar environments. The prelimbic (PL) and infralimbic (IL) regions of the rat prefrontal cortex (PFC) contribute to this ability so that rats trained to use one strategy have difficulty learning a new one if the PL/IL is inactivated. Thus, the PL/IL mediates learning new tasks in place of old ones, but it may also be required to switch between familiar tasks. To test this hypothesis, we trained rats to perform multiple task switches on a plus-shaped maze, alternating between two familiar tasks. Muscimol inactivation of the PL/IL never impaired switch acquisition, but did impair memory for the recently acquired switch 24 h later. Additional experiments determined that control rats continued to perform the new task 24 h after a switch, but rats with PL/IL inactivation had impaired memory and performed the same task that was learned before inactivation. This impairment was observed in multiple switches, demonstrating that PL/IL activity was required to remember which of two familiar tasks was most recently successful. After many switches, however, muscimol no longer impaired performance, and both saline- and muscimol-infused rats appeared to use immediate task contingencies rather than memory to select among familiar tasks. This strategy may account for the decreased effect of PL/IL inactivation observed after extensive training. Thus, although PL/IL activity contributed to memory for multiple task switches, it was not required for flexibly selecting among highly familiar tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inactivation of the infralimbic but not the prelimbic cortex impairs consolidation and retrieval of fear extinction.

Rats were subjected to one or two cycles of context fear conditioning and extinction to study the roles of the prelimbic cortex (PL) and infralimbic cortex (IL) in learning and relearning to inhibit fear responses. Inactivation of the PL depressed fear responses across the first or second extinction but did not impair learning or relearning fear inhibition (experiment 1). Inactivation of the IL...

متن کامل

The effects of dopamine D(1) receptor blockade in the prelimbic-infralimbic areas on behavioral flexibility.

This study examined the effects of a dopamine D(1) antagonist, SCH23390, infused into the prelimbic-infralimbic areas on the acquisition of a response and visual-cue discrimination task, as well as a shift from a response to a visual-cue discrimination and vice versa. Each test was carried out in a cross-maze. The response discrimination required learning to always turn in the same direction (r...

متن کامل

Activity in prelimbic cortex subserves fear memory reconsolidation over time.

The prelimbic cortex has been implicated in the consolidation of previously learned fear. Herein, we report that temporarily inactivating this medial prefrontal cortex subregion with the GABAA agonist muscimol (4.0 nmol in 0.2 μL per hemisphere) was able to equally disrupt 1-, 7-, and 21-d-old contextual fear memories after their brief retrieval in rats. In all cases, this effect was prevented ...

متن کامل

Involvement of the prelimbic-infralimbic areas of the rodent prefrontal cortex in behavioral flexibility for place and response learning.

The present experiments investigated the role of the prelimbic-infralimbic areas in behavioral flexibility using a place-response learning paradigm. All rats received a bilateral cannula implant aimed at the prelimbic-infralimbic areas. To examine the role of the prelimbic-infralimbic areas in shifting strategies, rats were tested on a place and a response discrimination in a cross-maze. Some r...

متن کامل

The Effect of Catecholaminergic Depletion Within the Prelimbic and Infralimbic Medial Prefrontal Cortex on Recognition Memory for Recency, Location, and Objects

There is good evidence that the medial prefrontal cortex (mPFC) is involved in different aspects of recognition memory. However, the mPFC is a heterogeneous structure, and the contribution of the prelimbic (PL) and infralimbic (IL) cortices to recognition memory has not been investigated. Similarly, the role of different neuromodulators within the mPFC in these processes is poorly understood. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 17  شماره 

صفحات  -

تاریخ انتشار 2007